Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 17(5): 365-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22512337

RESUMO

Although a large proportion of molecules expressed in the nervous system are conserved from invertebrate to vertebrate, functional properties of such molecules are less characterized. Here, we show that highly conserved hydrolase AHO-3 acts as a novel regulator of starvation-induced thermotactic plasticity in Caenorhabditis elegans. As wild-type animals, aho-3 mutants migrated to the cultivation temperature on a linear thermal gradient after cultivation at a particular temperature with food. Whereas wild-type animals cultivated under food-deprived condition showed dispersed distribution on the gradient, aho-3 mutants exhibited tendency to migrate toward higher temperature. Such an abnormal behavior was completely rescued by the expression of human homologue of AHO-3, indicating that the molecular function of AHO-3 is highly conserved between nematode and human. The behavioral regulation by AHO-3 requires the N-terminal cysteine cluster, which ensures the proper subcellular localization of AHO-3 to sensory endings. Double-mutant analysis suggested that AHO-3 acts in the same pathway with ODR-3, a heterotrimeric G protein alpha subunit. Our results unveiled a novel neural protein in C. elegans, confirming its conserved role in behavioral regulation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Hidrolases/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Privação de Alimentos , Humanos , Hidrolases/metabolismo , Locomoção/fisiologia , Dados de Sequência Molecular , Alinhamento de Sequência , Temperatura
2.
Genes Cells ; 14(10): 1141-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19735483

RESUMO

The intestine plays an essential role in organism-wide regulatory networks in both vertebrates and invertebrates. In Caenorhabditis elegans, class 1 flr genes (flr-1, flr-3 and flr-4) act in the intestine and control growth rates and defecation cycle periods, while class 2 flr genes (flr-2, flr-5, flr-6 and flr-7) are characterized by mutations that suppress the slow growth of class 1 flr mutants. This study revealed that flr-2 gene controls antibacterial defense and intestinal color, confirming that flr-2 regulates intestinal functions. flr-2 encoded the only glycoprotein hormone alpha subunit in C. elegans and was expressed in certain neurons. Furthermore, FLR-2 bound to another secretory protein GHI-1, which belongs to a family of lipid- and lipopolysaccharide-binding proteins. A ghi-1 deletion mutation partially suppressed the short defecation cycle periods of class 1 flr mutants, and this effect was enhanced by flr-2 mutations. Thus, FLR-2 acts as a signaling molecule for the neural control of intestinal functions, which is achieved in a functional network involving class 1 and class 2 flr genes as well as ghi-1. These results are informative to studies of glycoprotein hormone signaling in higher animals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Intestinos/inervação , Intestinos/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Escherichia coli/fisiologia , Subunidade alfa de Hormônios Glicoproteicos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Expectativa de Vida , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Neurônios/metabolismo , Pigmentação , Ligação Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
3.
Infect Immun ; 77(11): 4983-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19687201

RESUMO

Caenorhabditis elegans was recently developed as a model system to study both pathogen virulence mechanisms and host defense responses. We previously demonstrated that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important gram-positive nosocomial pathogen Enterococcus faecalis. We also presented evidence of oxidative stress and upregulation of stress responses after exposure to the pathogen. As in mammalian systems, this new work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-Duox1/BLI-3, causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-Duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. Ce-Duox1/BLI-3 was previously characterized as having a role in cuticle cross-linking. Two C. elegans mutants with point mutations in the peroxidase domain that exhibit severe cuticle defects were discovered to be unaffected in ROS production or pathogen susceptibility. These results demonstrate an important biological role for the peroxidase domain in cuticle cross-linking that is unrelated to ROS production. To further demonstrate the protective effects of the pathogen-induced ROS production, we show that antioxidants that scavenge ROS increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under nonpathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Proteínas de Caenorhabditis elegans/biossíntese , Oxidases Duais , NADPH Oxidases/biossíntese , Oxirredutases
4.
J Biol Chem ; 283(1): 194-201, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17951251

RESUMO

During infection, damage can occur to the host as an outcome of both pathogen virulence mechanisms and host defense strategies. Using aggregation of a model polyglutamine-containing protein as an indicator in Caenorhabditis elegans, we show that protein damage occurs specifically at the site of the host-pathogen interaction, the intestine, in response to various bacterial pathogens. We demonstrate that the insulin signaling pathway and the heat shock transcription factor (HSF-1) influence the amount of aggregation that occurs, in addition to heat shock proteins and oxidative stress enzymes. We also show that addition of the antioxidants epigallocatechin gallate and alpha-lipoic acid reduces polyglutamine aggregation. The influence of oxidative stress enzymes and exogenous antioxidants on protein aggregation suggests that reactive oxygen species produced by the host are a source of protein damage during infection. We propose a model in which heat shock proteins and oxidative stress enzymes regulated by insulin signaling and HSF-1 are required for tissue protection during infection, to minimize the effects of protein damage occurring as a result of host-pathogen interactions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Temperatura Alta , Insulina/fisiologia , Mucosa Intestinal/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Catequina/análogos & derivados , Catequina/farmacologia , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Músculos/metabolismo , Músculos/microbiologia , Neurônios/metabolismo , Neurônios/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/genética , Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Tióctico/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
5.
Genetics ; 176(3): 1567-77, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17483415

RESUMO

Caenorhabditis elegans has recently been developed as a model for microbial pathogenesis, yet little is known about its immunological defenses. Previous work implicated insulin signaling in mediating pathogen resistance in a manner dependent on the transcriptional regulator DAF-16, but the mechanism has not been elucidated. We present evidence that C. elegans, like mammalian phagocytes, produces reactive oxygen species (ROS) in response to pathogens. Signs of oxidative stress occur in the intestine - the site of the host-pathogen interface - suggesting that ROS release is localized to this tissue. Evidence includes the accumulation of lipofuscin, a pigment resulting from oxidative damage, at this site. In addition, SOD-3, a superoxide dismutase regulated by DAF-16, is induced in intestinal tissue after exposure to pathogenic bacteria. Moreover, we show that the oxidative stress response genes sod-3 and ctl-2 are required for DAF-16-mediated resistance to Enterococcus faecalis using a C. elegans killing assay. We propose a model whereby C. elegans responds to pathogens by producing ROS in the intestine while simultaneously inducing a DAF-16-dependent oxidative stress response to protect adjacent tissues. Because insulin-signaling mutants overproduce oxidative stress response enzymes, the model provides an explanation for their increased resistance to pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Catalase/imunologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/imunologia , Fatores de Transcrição/imunologia , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Enterococcus faecalis , Fatores de Transcrição Forkhead , Imunidade , Intestinos/imunologia , Intestinos/microbiologia
6.
Genes Dev ; 20(21): 2955-60, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17079685

RESUMO

Caenorhabditis elegans exhibits a food-associated behavior that is modulated by the past cultivation temperature. Mutations in INS-1, the homolog of human insulin, caused the defect in this integrative behavior. Mutations in DAF-2/insulin receptor and AGE-1/phosphatidylinositol 3 (PI-3)-kinase partially suppressed the defect of ins-1 mutants, and a mutation in DAF-16, a forkhead-type transcriptional factor, caused a weak defect. In addition, mutations in the secretory protein HEN-1 showed synergistic effects with INS-1. Expression of AGE-1 in any of the three interneurons, AIY, AIZ, or RIA, rescued the defect characteristic of age-1 mutants. Calcium imaging revealed that starvation induced INS-1-mediated down-regulation of AIZ activity. Our results suggest that INS-1, in cooperation with HEN-1, antagonizes the DAF-2 insulin-like signaling pathway to modulate interneuron activity required for food-associated integrative behavior.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Comportamento Alimentar , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Receptor de Insulina/antagonistas & inibidores , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Insulina/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/genética , Transdução de Sinais , Supressão Genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...